
AD-AI774 322 MARINE CORPS COMBAT READINESS EVALUATION SYSTEM /
SOFTWARE APPLICATIONS (MC (U) GEORGE WASHINGTON UNIV
WASHINGTON DC INST FOR MANAGEMENT SCIE W E CAVES

IUNCLASSIFIED AUG 85 GWU/IMSE/SERIAL-T-58i/85 F/G 9/2 UL

EEEEEEEEEEEEEE
EEEEEEEEEEEEEE
EEEEEIIIIEEE

32

I:.0

11,1.I I I IIIIi I

~~~Ill'- ll ifjjj.8

W-ROCOPY RESOLUTION TEST CHART
'ATIfNAL Rtlglkl OF STA NARM 1%3-A

4.%



Marine Corps Combat Read~ness
Evaluation System

~outinc Library EO G

by W SIGO

W. E. Caves -NVRST
STUDENTS FACULTY STUDY R
ESEARCH DEVELOPMENT FUJ
URE CAREER CRE/AE,1IVITIY CC
MMUNITY LEADERSHIP TECH-
NOLOGY FRONTIF SIGN
ENGINEERING APP.*N
GEORGE WASHW NI\

vv2 0

Ij,



Marine Corps Combat Readiness
Evaluation System

Software Applications (MCCRESSA)
Subroutine Library

by

W. E. Caves

Readiness Research

GWU/IMSE/Serial T-501/85
August 1985

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Washington, DC 20052

Institute for Management Science and Engineering

DTIC
J;%ELECTE

Researon Supported NOV 2 0 Im
by

Contract N00014-85-C-0716
Project NR 347 131

Office of Naval Research

This document has been approved for public sale

and release; its distribution is unlimited.

V.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
I REPORT NUMBER 2. G VT ACC O RCIIENTS CATALOG NUMBER

GWTU / IMSE/Serial T-501/85 _ _ _ _ _ _ _

4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

SLARINE CORPS COMBAT READINESS EVALUATION
SYSTEM SOFTWARE APPLICATIONS (MCCRESSA) SCIENTIFIC
SUBROUTINE LIBRARY S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) 0. CONTRACT OR GRANT NUMUER(e.)

Supported by
W. E. CAVES N00014-85-C-0716

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK
GEORGE WASHINGTON UNIVERSITY AREA & WORK UNIT NUMBERS

INSTITUTE FOR MANAGEMENT SCIENCE AND ENGINEERING
WASHINGTON, D.C. 20052

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

OFFICE OF NAVAL RESEARCH 30 August 1985
CODE 411 S&P 13. NUMBER OF PAGES

ARLINGTON. VA 222 7 _44

14. MONITORING AGENCY NAME & ADDRESS(Il different from Controlling Office) 1S. SECURITY CLASS. (of thle report)

UNCLASSIFIED
15a. DECLASSIFICATION/DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of tlhi Report)

APPROVED FOR PUBLIC SALE AND RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract entored in Block 20, Ift diferent frm Report)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reveree aide if neceeewy and identfy by block nuirber)

COMBAT READINESS TRAINING PROFICIENCY
READINESS EVALUATION PERFORMANCE ASSESSMENT
READINESS

20. ABSTRACT (Continue on rever. eside fi n.coeary and identify by block nrbr)
A set of 24 subroutines for the Marine Corps Combat Readiness Evaluation

System Software Applications (MCCRESSA) programs are documented. These
subroutines, presented resident on the IBM Series/l system at The George
Washington University, are callable from either COBOL or EDL application
programs operating under Version 4 of the IBM Event Driven Executive (EDX).
These subroutines are written in either COBOL or the Series/] Event Driven
Executive Language (EDL) depending upon the ease/efficiency of implementing
the functions performed.

O JAN 1473 EDITION Of I NOV S IS OBSOLETE
S 'N 0102- LF- 014- 6601 UNCLAS FIetDSECURITY CLASSIFICATION OF

r
THIS PAGE (lten beta 3nter)



THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science

Washington, DC 20052

Institute for Management Science and Engineering

Marine Corps Combat Readiness
Evaluation System

Software Applications (MCCRESSA)
Subroutine Library

by

W. E. Caves

Abstract
of

Readiness Research
GWU/IMSE/Serial T-501/85

30 August 1985

- A set of 24 subroutines for the Marine Corps Combat Readiness
Evaluation System Software Applications (MCCRESSA) programs are
documented. These subroutines, presently resident on the IBM Series/1
system at The George Washington University, are callable from either
COBOL or EDL application programs operating under Version 4 of the IBM
Event Driven Executive (EDX). These subroutines are written in either
COBOL or the Series/1 Event Driven Executive Language (EDL) depending
upon the ease/efficiency of implementing the functions performed.,.--

.,"'-- - -1
A 1 1

Research Supported F - .
by

Contract N00014-85-C-0716A A lfl1V Cx~eS
Project NR 347 131 A'il uvd/or

Office of Naval Research List t Specl



T-501

TABLE OF CONTENTS

0. Introduction I

1. ALPHAM 3
2. AVGPIJ 4

3. CLEAR 6
C. crTSEL 7

5. COBPGM 10
6. DIRECT 11
7. EVALHD 18
8. GETALL 21

9. GETONE 22
10. GETWRD 23
11. IDCODE 25
12. IDDECODE 26

13. PRINTL 28
1 4. PUTALL 31
15. PUTONE 32
16. ROMNUM 33

17. SLIDET 34
18. SQROOT 35
19. TRANS1 36
20. UPCASE 38

21. UNIQUE 39
22. UNITI2 40
23. UNITID 41
24. YNRESP 42

"V 1 " , " " ' " % "



THE GEORGE WASHINGTON UNIVERSITY

School of Engineering and Applied Science
Washington, DC 20052

Institute for Management Science and Engineering

Marine Corps Combat Readiness
Evaluation System

Software Applications (MCCRESSA)

Subroutine Library

by

W. E. Caves

Readiness Research

GWU/ISE/Serial T-501/85
30 August 1985

0. Introduction

The Marine Corps Combat Readiness Evaluation System (MCCRES) has

been operational since July 1978 and, since that time, the Readiness

Research group has performed research on MCCRES concepts, procedures,

and data. Since the third quarter of Fiscal 1981, this research has

been supported by an IBM Series/1 installed at The George Washington

University. This support has allowed the development of MCCRES Software

Applications (MCCRESSA) programs in a COBOL environment similar to that

existing within Headquarters USMC (HQMC). Thus, the programs developed

to support the MCCRES research conducted at The George Washington

University are also suitable for operation at HQMC and, in some

instances with modification, at Marine Units in the field. In fact,

such MCCRESSA programs are presently operating at HQMC and in the field.

This paper describes a set of subroutines callable by either

COBOL or EDL application programs. In order to facilitate its use as a

reference document, each subroutine's documentation begins on a new

page, is ordered alphabetically, and all pages have the subroutine's

name at the top. These subroutines are available in the library volume

named EDLLIB. The subroutines are made available as object modules for

linking into applications programs by the data set EDLAUTO,ELDLIB. A
copy of this data set appears as Figure 0.1.

References [1] through [10] contain related MCCRES material.



T-501

COBPGM#O. KDLLIB COBPGM
GETONE#O, EDLLIB GETIONE
GETAL.L#O, EDLLIB GETALL
PUTONE#O, EDLLIB PUTONE
PUTALL#O. EDLLIB PUTALL
SLIDET#O,EDLLIB SLIDEL SLIDER
PRINTL#O, EDLLIB PR INTL
CLEAR#O, EDLLIB CLEAR
ROM MU #i,EDLLIB ROI4NUM
UNIQUE#O. EDLLIB UNIQUE
YNRESP#O,EDLLIB YNRESP YN$WORK
GETWRD#O,EDLLIB GETWED GW$WORK GW$BEGIN GW$SCANI GW$RESPL
TRANSi DOEDLLIB TRANSI
UPCASE#O,EDLLIB UPCASE# UPCASE
ALPHAN#O,EDLLIB ALPHAM YN$WORK
IDCODE#O, EDLLIB IDCODE
IDDCOD#O, EDLLIB IDDECODE
UNITI2#1 ,EDLLIB UNITI2
EVALHDII ,EDLLIB EVALHD
SQROOT#OEDLLIB SQROOT ITERCNT
DIRECT#O.EDLLIB GETRCD PUTRCD CLOSEF
UNITID#O,EDLLIB UNITID
CNTSELD1 ,EDLLIB CNTSEL
AVGPIJ#1 ,EDLLIB AVGPIJ
**END

EDLAUTO. EDL.LIB

Figure 0.1

-2



T-501
ALPHA Y

1. ALPHAM

1.1. Description:

Tns ED. subroutine checks a TEXT area to determine if its
contents is alphameric. Alphameric is defined here to be a string of
one or more characters, each of which is either strictly alphabetic,
numeric, or a member of a set of special characters, and, optionally,
the first character is not numeric. In other words, the character
string is a traditionally valid tag.

The results of this test Is returned to the calling routine in
the current length field of the TEXT area tested. If the field is
strictly alphameric for the current length of the TEXT area, the current
length value is unaltered. Otherwise, it is set to zero before this
subroutine returns to the calling routine.

The format of the requisite EDL call statement is as follows:

CALL ALPHAMtxtadr,sctadr,ctlwrd

where the three arguments are defined as follows.

txtadr The address of a TEXT area containing the word to be
tested.

sctadr The address of a TEXT area containing a set of special
characters to be considered alphabetic In the alphameric
test. If this argument is zero and the control word
below requests that special characters be included in the
test, then the three characters dollar sign ($), pound
sign (M), and at sign (@) are the special characters
considered alphabetic.

ctlwrd The control word argument is passed directly. Only the
two least significant bits are used by this routine.
Their hex value and meaning are as follows.

HEX Meaning

02 1 -> no special character table is to be used.
01 1 -> first character may be numeric.

1.2. External Addresses:

ALPHAM Subroutine entry point.

% 1.3. Called Subroutines: None.

- j

-3-



T-501
AVGPIJ

2. AVGPIJ

2.1. Description:

This C050Z subro-jtine will compute the average protatility of a
requirement being scored yes, P, and its standard error, SE, based upon
a sample population having the number of evaluated requirements, E, and
the number of those scored yes, Y. The calculations performed are
defined as follows.

For E - 0

P = 0.5

SE = 0.5

For E > 0

For Y - 0 or Y - E

Y - Y + 0.5

E = E + 1.0

.P - Y/E

1/2
SE - ((P(I-P))/E)

The format of the requisite COBOL call statement is as follows:

CALL "AVGPIJ" USING ctabi prob-est-parm

where ctabi is the index of the category for which the calculations are
to be performed and prob-est-parm is the probability estimating category
table used by FORECAST. The first parameter is simply a binary number
with a COBOL definition of

PIC S9999 COMP SYNC.

The second parameter is defined in COBOL copy code named PECATPRM. This
code is given in Figure 2.1. The only data elements of interest in this
copy code are ECNT and YCNT, referenced by this routine, and PJ and SE,
set by this routine.

2.2. External Addresses:

AVGPIJ Subroutine entry point.

2.3. Called Subroutines: SQROOT.

-4-

S5.R5OT0

-. .-. ,.-



T-501
AVGPIJ

* 02/02/85
1 PROB-EST-PAR.

2 STACK-CTL.
1000 3 CAT-MAX PIC S9999 COMP SYNC.

0 3 CAT-NEXT PIC S9999 COMP SYNC.
3 CAT-TAB-LEV PIC S9999 COMP SYNC.

3 CAT-LOAD-LEV PIC S9999 COMP SYNC.
2 CAT-STACK.

3 CAT-STK OCCURS 1000 TIMES.
4 FROMI PIC S9999 COMP SYNC.
4 NEXTI PIC S9999 COMP SYNC.
4 DOWNI PIC S9999 COMP SYNC.
4 CAT-STK-CTRS.
5 RCNT PIC S9(9) COMP SYNC.
5 ECNT PIC S9(9) COMP SYNC.
5 YCNT PIC S9(9) COMP SYNC.
5 PJ PIC S9(1)V9(6) COMP SYNC.
5 SE PIC S9(1)V9(6) COMP SYNC.

5 FJ PIC $9(1)V9(6) COMP SYNC.
4 CAT.
5 CAT1 PIC X(2).
5 CAT2 PIC X.
5 CAT3 PIC X.

4 NOMEN PIC X(10).
4 CATLEV PIC 9.
4 PSEFORCE PIC X.

v! Probability Estimating Category Table

Figure 2.1

-5-



T-501
CLEAP

3. CLEAR

3.1. Description:

This EDL subroutine, to be called from a COB3L program, clear:
the static USEh terminal from which the program was loaded. If the USEh
terminal is not static this subroutine simulates a no operation.

The format of the requisite COBOL call statement is as follows:

CALL "CLEAR".

where no arguments are required. The subroutine actually has one dummy
argument which is required for any COBOL call.

3.2. External Addresses:

CLEAR Subroutine entry point.

3.3. Called Subroutines: None.

-6

C, : = - J . ; - - - - t [ " ' "" " " " " " " " "" " "



T-501
CNTSEL

4. CNTSEL

4.1. Description:

Tr. Z2KJ sjbroitine wiA.: builc a crCoC refe-ence table of
requirement czunts column indexes that a) are fiagge as selected, b)
have an evaluation closing date that falls within a given range, and c)
have a group code of interest. The selection flag table, 'from' and
'to' dates defining the evaluation closing date range, and the table of
group codes of interest are typically filled by SETPRM.

J ON

The format of the requisite COBOL call statement is as follows:

CALL "CNTSEL" USING sel-parm crfile-hdr hdr-parm

where sel-parm, crfile-hdr, and hdr-parm are defined in copy code
modules named SELPARM (Figure 4.1), HDRPARM (Figure 4.2), and CRHDRPRM
(Figure 4.3), respectively. CNTSEL sets XREF-CNT and XREF-TAB, uses
GROUP-SELECT-TEST as a work area, and references the remainder of
SEL-PARM. HDR-PARM is used in the call to UNITI2. The file names and
EDX volumes must be set prior to invoking this subroutine. Finally,
CRFILE-HDR-PARM must have been initialized by CRINFO.

The requirement count columns scanned by CNTSEL are from OLD-NXT
to NEW-CNT. If PARM-FROM-DATE is blank no date selection is made. If
PARM-FROM-DATE is non-blank and PARM-TO-DATE is blank the single day
defined by PARM-FROM-DATE is the date select range.

4.2. External Addresses:

CNTSEL Subroutine entry point.

4.3. Called Subroutines: UNITI2.

V..

AA--L.:r1.5L.:. e:%e



T-501
CNTSEL

* REQUIREMENT FREQUENCY COUNTS FILE SELECT PARAMETER -01/07/85

SEL-PARM.
2 XREF-CNT PIC S9999 COMP SYNC.
2 XFREF-TAB PIC S9999 COMP SYNC OCCUF-E- 160 IP
2 PARM-FROM-DATE.
3 MO PIC X(2).
3 FILLER PIC X.
3 DA PIC X(2).
3 FILLER PIC X.
3 YR PIC X(2).
2 PARM-TO-DATE.

3 MO PIC X(2).
3 FILLER PIC X.
3 DA PIC X(2).
3 FILLER PIC X.
3 YR PIC X(2).
2 GROUP-SELECT-TEST PIC X.
2 GROUP-SELECT-CHAR PIC X OCCURS 15 TIMES.
2 EVAL-SELECT-CHAR PIC X OCCURS 160 TIMES.

Requirement Counts File Select Parameter

Figure 4.1

* EVALHD/UNITI2 PARK - 01/07/85

1 HDR-PARM.
2 HP-ERR-CODES PIC S9(9) Comp SYNC.
2 HP-ERR-NUM PIC S9999 COMP SYNC.
2 HP-EVAL-ID.

3 HP-VOL PIC 9(2).
3 HP-EVAL PIC 9(3).
3 HP-EVAL-DEF2 REDEFINES HP-EVAL.

14 HP-EYAL-CHAR PIC X OCCURS 3 TIMES.
2 HP-UNIT-EDXVOL PIC X(6).
2 HP-VOL-FILE PIC X(14).
2 HP-LIST-FILE PIC X(14).
2 HP-GROUP PIC X.
2 HP-SECTS.

3 HP-SECT PIC X OCCURS 7 TIMES.
2 HP-POSITIONSW PIC X(1).
2 HP-FIXEDSW PIC X(1).

UNITI2 Parameter

Figure 4.2

-8-

&&hi Skl



T-501
CNTSEL

u COUNT REQUIREMENTS FILE HEADER MEMORY FORMAT DEFINITION
" 2149 CHARACTERS 11/20/84
1 CRFILE-HDR-PARM.
2 PARM-PART1.
3 CAT-ID PIC X(2).
3 CAT-LEVEL PIC 9.
3 OLD-CNT PIC 9(3).
3 NEW-CNT PIC 9(3).
3 IP-GROUP-TABLE PIC X(15).

3 IP-VOL-TABLE PIC X(24).
3 IP-SECT-TABLE PIC X(15).

2 OLD-NXT PIC 9(3).
2 NEW-NXT PIC 9(3).
2 PARM-PART2.
3 COUNT-ID OCCURS 160 TIMES.
4 ID-VOL PIC 9(2).
4 ID-EVAL PIC 9(3).
4 ID-GROUP PIC X.
4 ID-SECTS PIC X(7).

Requirement Counts File Header Parameter

Figure 4.3

-9-



T-501
COBPGM

5. COBPGM

5.1. Description:

sT .o.,tine sets up the requisite COB: environment arc

then calls a main COBOL program. The COBOL compiler normally generates
three object modules which must be linked together to form a program.
These object modules are identified by suffixes to the main program name
as follows:

pgmnme#O EDL entry stub for a COBOL main program.

pgmnme#l Object code for program instructions and static data
areas.

pgmnme#B Input/Output buffer areas.

If a COBOL program Is to be loaded by an EDL 'root' program the
compiler supplied entry stub must be replaced. Most MCCRESSA programs
are of this type and, as such, the practice has been to write a custom
EDL entry stub, to name its source module 'pgmnme$S', and to name its
object module 'pgmnme$O'. The common code for a custom entry stub has
been assembled as this subroutine.

The format of the requisite EDL call statement is as follows:

CALL COBPGM,pgmnme,cobprm,exeprm

where the three arguments are defined as follows.

pgmnme The address of the entry point in the pgmnme#1 object
module. This field is required.

cobprm The address of a table of addresses locating the COBOL
application program's parameter areas.

exeprm The address a COBOL execution time parameter, if any. If
no such parameter is supplied this parameter must be zero
(it is presently zero in all MCCRESSA programs). If
supplied, this parameter must locate a character string
bounded by slashes that contains COBOL execution time
option keywords.

5.2. External Addresses:

COBPGM Subroutine entry point.

5.3. Called Subroutines: COKICIAO, COKGTRTO, & RETURN.

*10

S :- o -

- "P..,. ", -'- , , WL '' ' '',' ' -' ' ' ' I" " ' ' ' ' ' ' ' ' -' . . ." "" " "' '



T-501
DIRECT

6. DIRECT

6.1. Description:

DIRECT#O,EDLLI5 is a set of recc -d orientec fixed block direct
access input/output subroutines designed to be called from a COBOL
program. The specific subroutine names are GETRCD, PUTRCD, and CLOSEF.
It is assumed that any referenced file already exists, i.e., no
provision is made for allocating a file, and that all physical blocks
are 256 bytes. Also, file opening is Implicit and file closing may or
may not be Implicit depending upon whether or not a call to 7UTRCD was
made.

6.1.1. File Control Block, First Parameter:

All input/output control areas for a file are contained within a
file control block. Since the file control block is maintained within
the calling routine, any number of files may be open at one time.
Included within a file control block is a stack of one or more
Input/output buffer areas. This stack is 'rotated' with use such that a
buffer's position in the stack is an indication of its 'age' in terms of
last use with the top position of the stack being occupied by the most
recently used buffer. No actual disk reading/writing takes place for
any GETRCD or PUTRCD request If the requested logical record is already
in one of the buffers. If the requested logical record is not already
In one of the buffers, the 'oldest' buffer is moved to the top of the
stack, the current block is written to disk only if It was modified
(i.e., the target of a previous PUTRCD request), and the block
containing the requested logical record is then read into the buffer.
This block read does not take place if the action requested is PUTRCD
and either the blocking factor is one or the requested block is 'new' to
the logical file.

Figure 6.1 gives a typical file control block described in COBOL
statements. For reference purposes, a line number Is included at the
end of each line in Figure 6.1.

6.1.1.1. The value supplied in line 02 is the decimal equivalent of hex
0104 which represents subroutine level 1 EDX level 4, the current
mod-level, of DIRECT#O. This value is checked only at the first linkage
to any one of the subroutines. If it is not equal to the current
subroutine mod-level the subroutine issues a message and a PROGSTOP 16.
After this initial program check, this area is used as a return code for
the called routine. A -1 indicates that the requested action was taken.
If such Is not the case a return code (in the 100s) is issued.

6.1.1.2. The value supplied In line 03 is the Indication that the file

is not open. The calling program may, at any time, cause the next
GETRCD or PUTRCD linkage to open the file by setting this field to
zero. This field and the following 64 bytes are used as an EDL DSCB.
The first word of the DSCB is always -1 except when the previous action
was unsuccessful in which case this value is greater than zero.

- 11 -



T-501
DIRECT

1 IO-FILE-CONTROL-BLOCK. 01

2 IO-RET-CODE PIC S9999 COMP SYNC VALUE 260. 02

2 IO-DSCB-CODE PIC S9999 COMP SYNC VALUE 0. 03
2 FILLER PIC X(64). Oj

2 10-DSN PIC X(8) VA.UE "DDDDDD2". 0r

2 IO-VOL PIC X(6) VALUE "VVVVVV". 06

2 IO-LOG-RCD-LNG PIC S9999 COMP SYNC VALUE n1. 07
2 IO-STACK-SIZE PIC S9999 COMP SYNC VALUE n2. 08

2 IO-BLOCK-FAC PIC 39999 COMP SYNC. 09
2 IO-ALLOC-SIZE PIC $9(9) COMP SYNC. 10

2 IO-USED-SIZE PIC 39(9) COMP SYNC. 11
2 IO-LAST-BLOCK PIC S9(9) COMP SYNC. 12

2 IO-BUF-I PIC S9999 COMP SYNC. 13
2 IO-DEBLK-I PIC S9999 COMP SYNC. 14

2 FILLER PIC X(2'n2). 15
2 FILLER PIC X(2). 16

2 IO-BUFFERS OCCURS n2 TIMES. 17
3 IO-BUF-BLOCK-NO PIC S9(9) COMP SYNC. 18

3 IO-BUF-MOD-SW PIC X. 19

3 FILLER PIC X. 20

3 IO-BUF-RCD PIC X(nl) OCCURS n3 TIMES. 21

3 FILLER PIC X(nM). 22

File Control Block

Figure 6.1

6.1.1.3. The values supplied in lines 05 and 06 are used to update the

DSCB during an open operation only. An open operation takes place
during a GETRCD or PUTRCD linkage with IO-DSCB-CODE zero. If the

requested record number (see paragraph 6.1.2 below) is zero the linkage
is simply an open request. Otherwise, the requested get/put action

takes place following a successful open.

6.1.1.4. The value supplied in line 07, n1, is the logical record

length for the subject file. It may be any value from 1 to 256. This
nl also appears as the length of IO-BUF-RCD in line 21.

6.1.1.5. The value supplied in line 08, n2, gives the number of buffers
used for I/O operations. It may be any value greater than 0. The area

reserved by line 15 must be two bytes for each buffer and the number of

buffers defined in line 17 must be n2.

6.1.1.6. Each buffer contains n3 logical records of n1 bytes each as

defined in line 21. Here, n3 - floor(256/nl). Any unused space is
defined by the filler in line 22 where n - (256 - nlmn3). This line is
omitted If nM - 0.

- 12 -



T-501
DIRECT

6.1.1.7. Lines 09 through 22 are initialized during an open operation
and updated as appropriate during normal subroutine operation.

6.1.1.8. 10-RET-CODE and IO-DSCB-CODE may be redefined together as PIC
S9(9) COMP SYNZ in whiich case the value wojit be -' for all successful
subroutine calls. If the value is not -1, 10-RET-CODE and IO-DSCB-CODE
should each be analyzed to determine the error. The possible value. for
each of these return codes are given in paragraph 6.1.6 below.

6.1.1.9. The following is an alternative definition for lines 17 thru
22.

2 FILLER PIC X(262) OCCURS n3 TIMES. 17

6.1.2. Logical Record Area, Parameter two.

The linkages GETRCD and PUTRCD each require a second parameter.
This parameter, again described in COBOL statements with line numbers
(continued from Figure 6.1), is given in Figure 6.2. This parameter
supplies the logical record number (line 32) and the logical record
(line 33). Here, the n1 must be the same value as the n1 appearing on
line 07.

1 LOG-RCD-AREA. 31

2 LOG-RCD-NUM PIC S9(9) COMP SYNC. 32
2 LOG-RCD PIC X(nl). 33

Logical Record Area

Figure 6.2

6.1.3. Get Record Entry.

A GETRCD request may be made for any record number 0 thru
IO-USED-SIZE. As stated earlier, a request with a logical record number
of zero is simply an open request. A requent with a record number
greater than IO-USED-SIZE returns with an IO-2ET-CODE of 110 indicating
end-of-file and the LOG-RCD area unchanged. An octual get record
request has a logical record number from 1 thru IO-USED-SIZE. Such a
request searches the buffers to determine if the requested block is in
memory. If the requested block is not in memory, the 'oldest' buffer is
moved to the top of the stack. It is then checked to determine if the
current contents have been modified. If its contents have been modified
the block is written to disk before the requested block is read into the
buffer. In any event, the requested logical record is moved to LOG-RCD
and the IO-BUF-I and IO-DEBLK-I fields are updated.

- 13 -

.*.~~~v N* -. 4



T-501
DIRECT

6.1.4. Put Record Entry.

A PUTRCD request may be made for any record number 0 thru

IO-USED-SIZE+1 that does not exceed lO-ALLOC-SIZE. As above, a request
for logical reoord number , is simply an open req.est. A request with a

record number greater tha IO-ALLOC-SIZE returns an IO-RET-CODE of 120
which is an output end-of-file indication. A request with a record

number greater than IO-USED-SIZE+1 returns an 10-RET-CODE of 104
indicating that a 'gap' in the file would be created it the request were

honored. An actual put record request has a logical record number form
I thru IO-USED-SIZE+I. Such a request searches the buffers to determine

if the requested block is in memory. If the requested block is not in
memory, the 'oldest' buffer is moved to the top of the stack. It is
then checked to determine If the current contents have been modified.
If its contents have been modified the modified block is written to

disk. In any event, the requested block is read into the buffer if its
number does not exceed IO-LAST-BLOCK and the blocking factor is greater
than one. If its number does exceed IO-LAST-BLOCK, IO-LAST-BLOCK is
stepped. If no read takes place, the buffer block is initialized to
binary zero. Finally, LOG-RCD is moved to the buffer and the IO-BUF-I

and I0-DEBLK-I fields are updated.

6.1.5. Close File Entry.

A CLOSEF request need only be made if a previous PUTRCD request
was issued. The CLOSEF will first write to disk any modified blocks in
the buffer stack and then load $DISKUT3 to set the EOD marker.

6.1.6. Return Codes.

Following a successful linkage to one one of the DIRECT
subroutines the first two words of the File Control Block will each have
a value of -1 (this is also a doubleword value of -1). An unsuccessful
linkage will have an IO-RET-CODE value as defined in Figure 6.3. The
IO-DSCB-CODE may also have a value other than -1. If this is the case
the value may be an EDX Read/Write Return Code as given in Figure 6.4 or
a $DISKUT3 Return Code as given in Figure 6.5. Figures 6.4 and 6.5 were
copied from the Event Driven Executive Messages and Codes Manual
(SC34-0445-1). Which figure applies may be determined from the value of

IO-RET-CODE.

6.2. External Addresses:

GETRCD Read Record Subroutine entry point.

PUTRCD Write Record Subroutine entry point.
CLOSEF Close File Subroutine entry point.

6.3. Called Subroutines: None.

- 14 -



T-501
DIRECT

100 An open error occurred, the contents of IO-DSCB-CODE
indicate the type of error. If this value is -1 then the
error was that the subject data set was PGM rather than
DATA..

101 A read error has occurred, the contents of IO-DSCB-CODE
indicate the type of error. This error code can occur
following either a GETRCD or PUTRCD request.

102 A write error has occurred, the contents of IO-DSCB-CODE
indicate the type of error. This error code can occur
following any linkage.

104 Record number is greater than the highest record number in
the file plus one following a PUTRCD link. Honoring the
request would create a gap in the file.

110 End-of-file indicator following a GETRCD link.

120 End-of-file indicator following a PUTRCD link.

190 A CLOSEF request has been made and the subject file is not
open.

IO-RET-CODE Error Values

Figure 6.3

N

- 15)



T-501
DIRECT

Return Codes (by Function)
Disk and Diskette Read/Write Return Codes (continuqd)

Return
Code Condition

-1 Successtul compietion
1 1/0 error and no device status present

Ithis code ma be caused by the 1/0 area
starting at an odd byte address)

2 1/0 eo . trying to read device status
3 1/0 error retry count exhausted
4 Read device status 1/0 instruction error
5 Unrecoverable 1/0 error
6 Error on issuing 1/0 instruction for

normal 1/0
7 A no record found condition occurr*d

a seek for an alternate sector was perf ormed.
end another no record found occurred.
for example. no alternate is assigned

8 A system error occurred while processing
an I/0 request for a 1O24-bytal sector diskette

9 Device was off line when 1/0 was requested
10 Record number out of range of data se--may

be an and-of -file (data set) cyIndition
I1I Data sat not open or device mrarked unusable

when 1/0 was requested
12 DSCB was not OPEN; DOB address - 0
13 If extended deleted record support was requested

(SDCSBFLG bit 3 on), "h referenced sector was not
f ormatted at 128 bytes / sector or the request was
for more then one 266~- byte sector.
If extended deleted'record support was niot
requested ($DSCStFLG bit 3 off), a deleted sector
was orncaunterediduring 1/0.

14 The first sector of the requested record
was deleted

15 The second sector of the requested record
was deleted

16 The first and second sectors of the requested
record~ *ere deleted

Note: The actual number of records transferred is in the second word of the TICR.

EDX Read/Write Return Codes

Figure 6.4

Chapter 5 Return Codes~ MC-3

~~~~f~~ % %% ~ . ~ ,.,~.-*:~4~

Z", %

T-501

Return Codes (by Function) DIECT

$DISKUT3 Return Codes

The SDISKUT3 program places a return code in the first word of a data set control block
specified in a DSCB statcmcnt

Return
Code Condition
1 Invalid request code parameter (not 1-6)
2 Volume does not exist (All functions)
4 Insufficient space in library (ALLOCATE)
5 Insufficient space in directory (ALLOCATE)
6 Data set already exists - smaller than the

requested allocation
7 Insufficient contiguous space (ALLOCATE)
8 Disallowed data set name. eg SSEDXVOL or

SSEDXLIB (all functions except OPEN)
9 Data set not found

(OPEN. RELEASE. RENAME'
10 New name pointer is zero (RENAME)
11 Disk is busy

(ALLOCATE, DELETE. RELEASE. RENAME)
12 I/O error writing to disk

(ALLOCATE. DELETE. RELEASE. RENAME)
13 I/O error reading from disk (All functions)
14 Data set name is all blanks (ALLOCATE. RENAME)
15 Invalid size specification (ALLOCATE)
16 Invalid size specification (RELEASE)
17 Mismatched data set type

(DELETE, OPEN. RELEASE. RENAME)
18 Data set already exists - larger than the

requested allocation
19 SETEOD only valid for data set of type 'data-
20 Load of SDISKUT3 failed (SRMU only)
21 Tape data sets are not supported
23 Volume not initialized or Basic Exchange Diskette*

The Basic Exchange Diskette has been opened

$DISKUT3 Return Codes

Figure 6.5

A

- 17-

MC-310 SC14-(44 5

%i

T-501
EVALHD

7. EVALHD

7.1. Description:

Tris 0C - subroutine constructs a character st-ring text line
containing selected identification information regarding a MCCRES
Evaluation. The form of the requisite COBOL call statement is as
follows:

CALL "EVALHD" USING text-line eval-parm loc-tab rtn-tab

where the four required parameters are defined as follows:

I text-line. 01
2 FILLER PIC S9999 COMP SYNC. 02
2 LENGTH PIC S9999 COMP SYNC. 03
2 TEXT PIC X(length). 04

* 05
1 eval-parm 06
2 EP-ERR-CODES PIC S9(9) COMP SYNC. 08
2 EP-ERR-NUM PIC S9999 COMP SYNC. 09
2 EP-VOL PIC 99. 10
2 EP-EVAL PIC 999. 11
2 EP-UNIT-EDXVOL PIC X(6). 12
2 EP-VOL-FILE PIC X(14). 13
2 EP-LIST-FILE PIC X(14). 14
2 EP-GROUP PIC X. 15
2 EP-SECTIONS PIC X(7). 16
2 EP-POSITION-SW PIC X. 17
2 EP-FIXED-SW PIC X. 18

* 19
1 loo-tab. 20
2 LOCATION PIC S9999 COMP SYNC OCCURS n TIMES. 21

* 22
1 rtn-tab 23
2 RTN-INDEX PIC S9999 COMP SYNC OCCURS n+1 TIMES. 24

The following notes refer to the interpretation of these four
parameters by EVALHD and to the responsibilities of the calling routine.
In order to facilitate the discussion, reference is made to the 'line
numbers' assigned to the COBOL statements appearing above.

a) The length given in line 02 must be no greater than the
length defined for line 03. Further, the initial contents of
TEXT (line 03) are not significant.

b) Lines 06 through 12 of eval-parm are used as the first
parameter when calling UNITI2. See the discussion for UNITI2
regarding these lines.

-18-

- " " " . - -C- -, 9 -1.-. 3y: PA

T-501
EVALHD

c) EP-VOL-FILE is a I4 character field where the first eight
characters contain the name of the MCCRES Volume Nomenclature
File and the last six characters contain the EDX volume name
where this file resides.

d, EF-LIST-FILE is a 14 character field where the first eight

characters contain the name of the MCCRES List Nomenclature
File and the last six characters contain the EDX volume name
where this file resides.

e) EP-GROUP must contain the MCCRES Group (List) code that

applies to the MCCRES Evaluation identified by lines 10 and
11.

f) EP-SECTIONS may be blank or contain up to seven MCCRES
Section codes which, if requested, may be included in the
final contents of TEXT (line 04).

g) EP-POSITION-SW is a four valued switch which controls the
final justification of the contents of TEXT (lined4). The

four values are as follows:

N-> none
L -> left
C -> center

else -> right

h) EP-FIXED-SW is a two valued switch that controls the field
width associated with each identification data element when
it is placed In TEXT by this routine. If this switch has a
value of 'Y', the implied length is that given as the maximum
length in i) below. Otherwise, the length is the location of
the last non-blank character when the first position of the
field is taken to be location one.

I) Each element of rtn-tab, save the last, gives an index of the
routine that processes a particular identification element.
This table is scanned, processing each element in order,
until a zero entry is encountered. Thus, for n elements the
table must contain n+1 entries. The valid routine indexes,
the corresponding identification data element, and its
intrinsic maximum field length are given as follows:

1 -> MCCRES Volume Roman Numeral 11 char
2 -> MCCRES Volume Name Text 20
3 -> Evaluation Number 8
4 -> Group ID Code 7
5 -> Included Section Codes 16
6 -> MCCRES List Text 20

(if unknown) 7
7 -> MCCRES Unit ID 20
8 -> Evaluation Closing Date 21
9 -> MCCRES List ID 7

10 -> MCCRES POR Reference ID 12

- 19 -

4
%w%

T-501
EVALHD

j) Each element of loc-tab determines the beginning position in
TEXT for the identification element whose routine index is
the corresponding entry in rtn-tab. Thus the dimension of
loc-tab need only be n wnen t'at of rtn-tab is n+1. Value.
greater than zero give the beginning location in absolute
terms. Otherwise, the absolute value gives the number of
spaces between the present field and its predecessor.
Initially the predecessor ends at location zero.

In operation, EVALHD first blanks TEXT, scans rtn-tab processing
each identification data element in turn until a routine index of zero
is encountered, justifies the final contents of TEXT as requested by
EP-POSITION-SW, and then returns to the calling routine. Processing
implies moving the subject identification data element to TEXT beginning
at the column controlled by the current value of the column-index
counter and the corresponding entry in loc-tab and then setting the
column-index counter to locate the next available column as controlled
by the value of EP-FIXED-SW, i.e., using the maximum length of the
subject identification data element or its current length. No order is
required for processing data elements and no check is made to protect
against field overlap or TEXT overflow (characters falling outside TEXT
are simply ignored).

7.2. External Addresses:

EVALHD Subroutine entry point.

7.3. Called Subroutines: GETRCD, ROMNUM, SLIDEL, & UNITI2.

- 20 -

T-501

8. GETALL

8.1. Description:

This EDL sinr&, rtence. to be called from a CCK'- p7-cFam,

.t-anslates hex codez information, packed two hex digits per byte, to
character coded information, packed one character per byte. The primary

use of this subroutine is to unpack MCCRES scores from the 80 character

area in the MCCRES Evaluations Master File format to a 160 character

area for processing by a COBOL program. The actual translation
performed is based upon a 16 byte translate table which provides the
translated character for each of the possible hex values.

The form of the requisite COBOL call statement is as follows:

CALL "GETALL" USING sourcetransdest,index

where the four arguments are defined as follows.

source The hex coded source area which must be at least (L+1)/2
bytes long where L is the value of the fourth argument.

trans The 16 byte translate table.

dest The character destination area which must be at least L

bytes long where L is the value of the fourth argument.

index The index (PIC S9999 COMP SYNC) of the last hex code to

be translated. Presently this must have a value of from

1 to 160, inclusive.

8.2. External Addresses:

GETALL Subroutine entry point.

8.3. Called Subroutines: None.

'? .
,

V,

'jj

'd, - 21 -

T-501
GETONE

9. GETONE

9.1. Description:

This EDZ subroutine, intended to be called from a COBOL program.
translates one hex coded digit to a character coded byte. The primary
use of this subroutine is to unpack a MCCRES score from the 80 character
area in the MCCRES Evaluations Master File format to a character code
for processing by a COBOL program. The actual translation performed is
based upon a 16 byte translate table which provides the translated
character for each of the possible hex values.

The form of the requisite COBOL call statement is as follows:

CALL "GETONE" USING source,transdest,index

where the four arguments are defined as follows.

source The hex coded source area which must be at least (L+I)/2
bytes long where L is the value of the fourth argument.

trans The 16 byte translate table.

dest The character destination byte.

index The index (PIC 9999 COMP SYNC) of the hex code to be
translated. Presently this must have a value of from 1
to 160, inclusive.

9.2. External Addresses:

GETONE Subroutine entry point.

9.3. Called Subroutines: None.

-22 -

V. %" V A

T-501
GETWKR

10. GETWRD

10.1. Description:

T. E -c tine will deliver to the cal'irF routine a ' zrci
from the user. Unzer control of the calling routine, the word delive-ez
may be a complete user response (excluding leading and trailing blanks
but including all internal blanks), a single word from a user response
(delimited by blanks), or a null user response. The 'word' returned may
be either the next 'word' from a previously entered user response (no
prompt given) or the first 'word' from a new user response (prompt given
if supplied by the calling routine). A null user response is defined as

%no non-blank characters supplied by the user and is usually simply a
1carriage return following the prompt message. It may also arise when

the request is for a word from a stored response only and no such word
remains.

The format of the requisite EDL call statement is as follows:

' CALL GETWRD,msgadr,wrdadr,trtadrctlwrd

where the four arguments are defined as follows.

msgadr The address of a TEXT statement containing the prompting
character string. If no prompt is desired this argument
must be zero.

wrdadr This argument is the address of either the TEXT area
where the delivered word is to be placed or the area
where the address of the beginning of the word is to be

a.. stored. Which form this argument takes is determined by

the control word defined below.

trtadr The address of a 256 byte translate table which is to be
used to translate the user supplied word to the returned
word. Normally this table simply translates lower case
letters to upper case letters leaving all other bit
combinations as is. This argument must be zero if no
translation is desired.

ctlwrd This argument is a control word which is divided into two
parts. The first byte, undetermined by the calling
routine, is set to the length of the delivered 'word' by
this subroutine. The second byte consists of eight
control switches which are defined as follows:

-23-

a--'-, --.-V N.

T-501
GETWRD

HEX MEANING

80 (reserved - 0)
40 (reserved - 0)
20 (reserved - 0)
10 1 -> Force user response.
08 1 -> Return 'word' indirectly (argument 2 is

address of 'word' address.
O4 1 -> Return only stored response (no-read switch)
02 1 -> Return all of user response.
01 1 -> User response to be on line following prompt.

10.2. External Addresses:

GETWRD Subroutine entry point.

GW$WORK User response area (80 characters - not normally
referenced)

GW$BEGIN Index of the location in GW$WORK where the last

returned word begins.

GW$SCANI Index of the location in GW$WORK following the last
return word.

GW$RESPL Index of the location in GW$WORK of the last non-blank
character of the most recent user response.

10.3. Called Subroutines: None.

- 2 4 -

24'. -%.'.' .

T-501
IDCODE

11. IDCODE

11.1. Description:

This EDL subroutine, intendec to be called from a CDOL program,
translates a thirteen byte numeric/character count column identification
field suitable for COBOL processing Into six byte binary/hex coded field
for inclusion in the header record of a MCCRES Requirement Counts File
header record. A count column identification field identifies the
MCCRES Volume, historical evaluation number, group code, and MCCRES
Section selection, if any, for a Requirement Counts Column.

The form of the requisite COBOL call statement is as follows:

CALL "IDCODE" USING id-parm

where id-parm has the following COBOL definition.

S1 id-parm.
2 GROUP-TABLE PIC X(16) VALUE "0123456789ABCDEF".
2 SECTION-TABLE PIC X(15).
2 CODED-ID PIC X(06).
2 DECODED-ID.
3 ID-VOL PIC 99.
3 ID-EVAL PIC 999.
3 ID-GROUP PIC X.
3 ID-SECTS PIC X OCCURS 7 TIMES.

Any section code appearing in ID-SECTS must be contained in
SECTION-TABLE. Similarly, ID-GROUP must be contained in GROUP-TABLE.
This subroutine moves information from DECODED-ID to CODED-ID as
follows:

a) The binary value of the first byte of CODED-ID is set equal
to ID-VOL.

b) The binary value of the second byte of CODED-ID is set equal
to ID-EVAL.

C) The hex value of the first half of the third byte of CODED-ID
is set equal to the offset in GROUP-TABLE of the character in
ID-GROUP.

d) The indexes of any non blank characters in ID-SECTS are
stored in the seven hex values located in the second half of
the third byte and the remaining three characters of
CODED-ID. Blank positions are represented by hex zero.

11.2. External Addresses:

IDCODE Subroutine entry point.

11.3. Called Subroutines: None.

25

T-501
IDDECODE

12. IDDECODE

12.1. Description:

This EDL subroutine, intended to be callec fr- a COBOL program,
translates a six byte binary/hex coded count column identification
field, as it appears in a MCCRES Requirement Counts File header record,
into a thirteen byte numeric/character field suitable for COBOL
processing. The coded count column identification field which this
subroutine decodes was previously the product of the companion coding
subroutine, IDCODE, which operates from a thirteen byte
numeric/character field similar to the output of this subroutine.
Either of these fields identify the MCCRES Volume, historical evaluation
number, corresponding group code, and MCCRES Section selection, If any,
for a Requirement counts column.

The form of the requisite COBOL call statement is as follows:

CALL "IDDECODE" USING id-parm

where id-parm has the following COBOL definition.

1 id-parm.
2 GROUP-TABLE PIC X(16) VALUE "O123456789ABCDEF".
2 SECTION-TABLE PIC X(15).
2 CODED-ID PIC X(06).
2 DECODED-ID.
3 ID-VOL PIC 99.
3 ID-EVAL PIC 999.
3 ID-GROUP PIC X.
3 ID-SECTS PIC X OCCURS 7 TIMES.

SECTION-TABLE must have been initialized to the section table present In
part one of the Count Requirements File header record and CODED-ID set
to one of the six byte count identification fields in part two of the
same header record. This subroutine moves information from CODED-ID to
DECODED-ID as follows:

a) ID-VOL is set equal to the binary value of the first byte of
CODED-ID.

b) ID-EVAL is set equal to the binary value of the second byte
of CODED-ID.

c) ID-GROUP is set equal to the character in GROUP-TABLE whose
offset is the hex value of the first half of the third byte
of CODED-ID.

d) The second half of the third byte and the remaining three
characters of CODED-ID are interpreted as seven hex digits
which, when non-zero, index SECTION-TABLE. Each indexed
character in SECTION-TABLE is moved to ID-SECTS.

- 26 -

4,* ~ ..

T-501
ID DE CODE

12.2. External Addresses:

IDDECODE Subroutine entry point.

12.3. Called Subroutines: None.

'Cc

T-501
PF NTL

13. PRINTL

13.1. Description:

Tniz ED: s,.broutine is inten:ed tc replace COBD's I/O rotre:
for the system printers. This routine facilitates program control of
printer selection and, for printers other than $SYSPRTR, the setting of
the left margin. Each call to this routine performs either an OPEN,
CLOSE, NEWPAGE, or WRITE AFTER SKIP function. The function performed is
determined by the value of the first word of the first parameter passed
with the COBOL call statement. Each of these call types are discussed
separately below.

13.1.1. OPEN

The form of the requisite COBOL call statement to perform the
OPEN function is as follows:

CALL "PRINTL" USING parml

where parml has the following COBOL structure.

wordl PIC S9999 COMP SYNC VALUE -6.

word2 PIC S9999 COMP SYNC VALUE left margin. (The number of
spaces to the left of print position One. This has no

effect if the printer name is $SYSPRTR. The default
value is 16.)

word3 PIC S9999 COMP SYNC VALUE new line one. (The line number

on which the line of a NEWPAGE call is printed. The
default is 4.)

string PIC X(8) VALUE printer name. (The printer's name used
during System Generation. At present $SYSPRTR addresses
the IBM 4974 printer and $SYS4975 addresses the IBM 4975
printer. The default value is $SYS4975.)

All subsequent calls to PRINTL will address the above referenced printer
until another OPEN call is made. The calling program may switch between
printers at any time by simply issuing the proper OPEN calls. However,
only the initial OPEN call and those that follow a CLOSE call effect the
left margin for the open printer. If the first call to PRINTL is not an

OPEN request, then the default values given above apply.

13.1.2. CLOSE

The form of the requisite COBOL call statement to perform the
CLOSE function is as follows:

- 2E -

S26

Z..

T-501
PRINTL

CALL "PRINTL" USING parml

where parml has the following COBOL structure.

wz-di PIC S9999 COMP SYNC VALUE -4.

This call is optional. Its primary purpose is to logically close the
current spool job. The effect of this call is automatic at end-of-job
and, therefore, not required. It would only be used if it was desired
to end a spool job, change the left margin on a subsequent OPEN call to
the same printer, and then generate a new report.

13.1.3. NEWPAGE

The form of the requisite COBOL call statement to perform the
NEWPAGE function is as follows:

CALL "PRINTL" USING parml parm2 ... parmn

where the n parms have the following COBOL structures.

parmi:

wordl PIC S9999 COMP SYNC VALUE -2.

word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be printed.

parmi, i = 2 through n-1 (optional):

wordl PIC S9999 COMP SYNC VALUE number of times to overprint
(1-7).

word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be overprinted.

parmn (required):

wordl PIC S9999 COMP SYNC VALUE 0.

The NEWPAGE call causes the string in parml to be printed on the printer
at the line defined in the most recent OPEN call. Then the routine
steps through the parameter string, processing each successive parameter
as an overprint parameter, until a parameter is found whose overprint
value is zero. Thus, all NEWPAGE calls must have at least two
parameters. Each overprint parameter causes the overprint parameter
string to be printed on the current line the number of times given in
the overprint count. The overprint count is formed by ANDIng the value
in wordl with 7. It is the calling program's responsibility to maintain
the current line number and force new pages appropriately. No automatic
pagination is provided by this routine.

29-

T-501
PRINTL

13.1.,. WRITE AFTER SKIP

The form of the requisite COBOL call statement to perform the

WRITE AFTER SKIP function is as follows:

CALL "PRINTL" USING parml parm2 ... parmn

where the n parms have the following COBOL structures.

parml:

wordl PIC S9999 COMP SYNC VALUE >-O

word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be printed.

parmi, i - 2 through n-1 (optional):

word1 PIC S9999 COMP SYNC VALUE number of times to overprint
(1-7).

word2 PIC S9999 COMP SYNC VALUE string length.

string PIC X(string length) VALUE string to be overprinted.

parmn (required):

wordi PIC S9999 COMP SYNC VALUE 0.

The WRITE AFTER SKIP call causes the string in parml to be printed on
the next line after skiping the number of lines given in wordl of parml.
Then the routine steps through the parameter string, processing each
successive parameter as an overprint parameter, until a parameter is
found whose overprint value is zero. Thus, all WRITE AFTER SKIP calls
must have at least two parameters. Each overprint parameter causes the
overprint parameter string to be printed on the current line the number
of times given in the overprint count. The overprint count is formed by
ANDing the value in wordl with 7.

13.2. External Addresses:

PRINTL Subroutine entry point.

13.3. Called Subroutines: None.

-30-

T-501
PUTALL

14. PUTALL

14.1. Description:

This ED: sibroutine, intended tc be calle: from a COBOL program,
translates character coded information, packed one character per byte,
into hex coded information, packed two hex digits per byte. The primary
use of this subroutine is to pack MCCRES scores into the 80 character
area in the MCCRES Evaluations Master File format from a 160 character
area used for processing by a COBOL program. The actual translation
performed is based upon a 16 byte translate table which provides the
translated character for each of the possible hex values.

The form of the requisite COBOL call statement is as follows:

CALL "GETALL" USING dest,transsource,index

where the four arguments are defined as follows.

dest The hex coded destination area which must be at least
(L+1)/2 bytes long where L is the value of the fourth
argument.

trans The 16 byte translate table.

source The character source area which must be at least L bytes
long where L is the value of the fourth argument.

index The index (PIC S9999 COMP SYNC) of the last character to
be translated. Presently this must have a value of from
I to 160, inclusive.

14.2. External Addresses:

PUTALL Subroutine entry point.

14.3. Called Subroutines: None.

%

4,3

- 31 -

, -d ""'""?] - "> " -" ""- - ." " '','. . '',, -. '' '-"' ' , 2"-. < <

T-501
PUTONE

15. PUTONE

15.1. Description:

Tr.As EDL subroutine, intended tc be called from a COBO. prograT.,
translates a character code to a hex coded digit. The primary use of
this subroutine Is to pack a MCCRES score into the 80 character area in
the MCCRES Evaluations Master File format from a character code
processed by a COBOL program. The actual translation performed is based
upon a 16 byte translate table which provides the translated character
for each of the possible hex values.

The form of the requisite COBOL call statement is as follows:

CALL "GETONE" USING desttrans,source,index

where the four arguments are defined as follows.

dest The hex coded destination area which must be at least
(L+1)/2 bytes long where L is the value of the fourth
argument.

trans The 16 byte translate table.

source The character source byte.

index The index (PIC 9999 COMP SYNC) of the hex code to which
the translated character is to be placed. Presently this
must have a value of from 1 to 160, inclusive.

15.2. External Addresses:

PUTONE Subroutine entry point.

15.3. Called Suoroutines: None.

- 32 -

T-501
R O.IN UP.

616. ROMNUM

16.1. Description:

This COBOL s, routine, intended to be called from a SOu.
program, will convert an unsigned four digit decimal numoer to a left
justified Roman Numeral character string. The range of this conversion
is from one (I) to 3999 (MMMCMXCIX). The limit of 3999 is imposed
because the Roman Numeral Characters for 5000 and 10000, V bar and X
bar, respectively, are not included in the normal character sets on the
system printers. The routine will operate to 9999 substituting W for V
bar and Y for X bar. This extension was included in lieu of a special
error routine. The decimal number must be strictly numeric including
leading zeros. If this is not the case, the routine returns a null
character string as an error indicator.

• The form of the requisite COBOL call statement is as follows:

CALL "ROMNUM" USING parml

where parml has the following COBOL structure.

WORDI PIC S9999 COMP SYNC. (The supplied value is ignored.
This routine returns the length of the returned Roman

. ." Numeral character string here. If the next field is not
strictly numeric this value is set to zero.)

number PIC 9999 VALUE number to be converted.

string PIC X(16). (The supplied contents are ignored. The
converted Roman Numeral character string is placed here
left justified. If the above field is not strictly
numeric this field as set to all blanks.)

16.2. External Addresses:

ROMNUM Subroutine entry point.

16.3. Called Subroutines: None.

- 33 -

T-501
SLIDET

17. SLIDET

17.1. Description:

This EEL sjibro'vtire, intended to be callet by a COBDZ pr'cgra.,
left or right justifies 6irJs in a character string. The subroutine has
two entry points. SLIDEL to left justify and SLIDER to right justify.
The supplied character string is considered to contain words, each
separated by one or more blanks. The returned character string (the
same area of memory) will contain the same words, each separated by a
single blank, with the first word beginning at the first position for
SLIDEL or the last word ending in the last position for SLIDER. If the
supplied character string is all blank, it is returned all blank.

The form of the requisite COBOL call statement is as follows:

CALL "SLIDEi" USING parml

where i is either L or R and parml has the following COBOL structure.

wordl PIC S9999 COMP SYNC VALUE maximum string length. (Not
used by this subroutine.)

- word2 PIC S9999 COMP SYNC VALUE current string length.

string PIC X(maximum string length) VALUE supplied words.

17.2. External Addresses:

SLIDEL Subroutine entry point.
SLIDER Subroutine entry point.

17.3. Called Subroutines: None.

"I

-3J4 -

V T-501
SQROOT

18. SQROOT

18.1. Description:

T.s '.-ine, intended to be ca le: vb a C,.JL program,
computes the square root of a non-negative fixed pcint number using an
iterative algorithm, namely Newton's Method. Simply stated, to compute
the square root r of S with an error less than e we define

r(O) - k

where k is any constant and successively compute

r(i-1) + S/r(i-1)
r(i) --------------------

2

varying I from 1 to n such that

jr(n) - r(n-1)I < e

The form of the requisite COBOL call statement is as follows:

CALL "SQROOT" USING sqroot-work

where sqroot-work has the following COBOL structure.

I sqroot-work.
2 NUMBER PIC S9(i)V9(f) COMP SYNC.
2 SCALE PIC S9999 COMP SYNC VALUE f.

In the above I and f must both be non-negative and their sum must be
less than 10.

SQROOT replaces NUMBER with its truncated square root. Note that
the square root has the same precision as NUMBER. Thus, the square root
of 2 is computed to be as follows:

f square root iterations

0 1 7
8 1.41421356 6

". Throughout testing the number of iterations required varied from five to
seven.

18.2. External Addresses:

SQROOT Subroutine entry point.
ITERCNT Iteration Count (word).

18.3. Called Subroitines: None.

35 -

-a

T-501
TRANS1

19. TRANSI

19.1. Description:

Tr. is EEL. subroutine will translate a cha'&-ate- string, defined as
a TEXT statement, to the index of it's first occurrence in a table of
TEXT statements. Further, if requested, TRANSI will then translate this

index to the value of the corresponding entry in a table of single
precision words. This translate table may be a table of addresses.

The format of the requisite EDL call statement is as follows:

CALL TRANS1,arg,tab,reti,itab

where the four arguments are addresses defined as follows.

arg The address of a TEXT statement containing the character
string argument to be translated. The current length is
the argument's length.

tab The address of the first TEXT statement in a table of
TEXT statements to be searched for a match with the
argument. For each table TEXT entry, the maximum and

current lengths are taken to be the maximum and minimum
compare lengths, respectively. A match occurs for the
first table entry which, along with the argument,
satisfies three conditions as follows:

1) table entry minimum compare length not greater than
the argument's length,

2) table entry maximum compare length not less than the
argument's length, and

3) table entry and argument equal for a compare length
equal the argument's length.

A not found condition results in an untranslated index of

zero. The end of table condition is indicated by a table
entry of zero maximum length. The following is a typical
table of three entries requiring an exact match for a
found result.

TABLE TEXT 'FIRST ENTRY'
TEXT 'SECOND ENTRY'
TEXT 'THIRD ENTRY'

DC X'O0' END OF TABLE INDICATOR

A similar table requiring equivalence on the first word
only of each table entry would be as follows:

-36-

T-501
TRANS1

ALIGN
DC X'0B05'

TABLE DC 'FIRST ENTRY'
ALIGN
DC X'OCO'
DC 'SECOND ENTRY'
ALIGN
DC X'0B05'
DC 'THIRD ENTRY'
ALIGN
DC X'O000' END OF TABLE INDICATOR

reti The address of the index to be set indicating the results
of the execution of this subroutine. This index is a
single precision integer.

itab The address of a table of single precision integers which
are the corresponding translated indexes to be returned
for the entries in the 'tab' table of TEXT statements.
This value is zero when the index 'reti' is not to be
translated. Note: this address locates the translation
value for the first entry in the 'tab' table and it must
be preceeded by A value for the translation or the not
found condition ir such a condition may arise in the
execution of the subroutine. A typical table for either
of the above tables follows.

DC A(NFRTN) NOT FOUND ROUTINE
ITAB DC A(FERTN) FIRST ENTRY ROUTINE

DC A(SERTN) SECOND ENTRY ROUTINE
DC A(TERTN) THIRD ENTRY ROUTINE

19.2. External Addresses:

TRANSI Subroutine entry point.

19.3. Called Subroutines: 1one.

-37-

T-501
UPCASE

20. UPCASE

20.1. Description:

This EDL subroutine is non-executable. It is simply a 256 byte
table in which each byte contains the binary value representing its
location in the table with the exception of those positions
corresponding to the lower case alphabetic characters each of which are
replaced by the upper case value. This table is normally used to
translate lower case characters to upper Case characters.

20.2. External Addresses:

UPCASE Table Location.
UPCASE# Table Location.

20.3. Called Subroutines: None.

- 38 -

T-501
UNIQUE

21. UNIQUE

21.1. Description:

This EDL subroutine, intended to be called from a COBOL program,
will left justify an ordered set of unique characters taken from the
original contents of a supplied character string. The resultant length
of the returned character string is also returned.

The form of the requisite COBOL call statement is as follows:

CALL "UNIQUE" USING parml

where parml has the following COBOL structure.

wordl PIC S9999 COMP SYNC VALUE maximum string length. (Not
used by this subroutine.)

word2 PIC S9999 COMP SYNC VALUE current string length. (Upon
entry this word contains the length of the string to be
scanned for unique characters. Upon exit this word
contains the number of unique'non-blank characters found.

string PIC X(maximum string length) VALUE source/destination
string. (Upon entry this string contains the characters
to be scanned. Upon exit this string begins with the
ordered unique set of characters found. The positions to
the right of the last unique character contain the
original contents of this string.)

21.2. External Addresses:

UNIQUE Subroutine entry point.

21.3. Called Subroutines: None.

- 39 -

T-501
UNITI2

22. UNITI2

22.1. Description:

Tn's COBOL sbroutine delivers a MCCRES Unit File record

identified by its MCCRES Volume and historical evaluation number. It is
required that each unit file be named UI where I is a MCCRES volume

number, that only the named MCCRES Volume be represented in the file,
and that the file be in strict ascending sequence on historical

evaluation number. Reference to the file is by volume and evaluation
numbers directly on a 'best guess' basis and then sequentially, either
forward or backward to locate the requested record. If the requested

record does not exist a dummy record containing only the MCCRES Volume

number and historical evaluation number is constructed and given a
logical record number of zero.

The format of the requesite COBOL call statement is as follows.

CALL "UNITI2" USING unit-parm log-rcd-area.

- where the parameters have the following minimum COBOL definitions.

I unit-parm.
2 UP-ERR-CODES PIC S9(9) COMP SYNC.

2 UP-ERR-NUM PIC S9999 COMP SYNC.
2 UP-VOL PIC 99.
2 UP-EVAL PIC 999.
2 UP-EDXVOL PIC X(6).

*

1 log-rcd-area.

2 LOG-RCD-NUM PIC S9(9) COMP SYNC.

2 LOG-RCD.

3 UNIT-VOL PIC 99.
3 FILLER PIC X.
3 UNIT-EVAL PIC 999.
3 FILLER PIC X(122).

The calling program must have filled in UP-VOL, UP-EVAL, and

UP-EDXVOL (the EDX volume name where the unit files are located,
typically HRDMCV). Upon return from this routine, UP-ERR-NUM will be
unchanged for a successful request, or be set to 2 if the error occurred
during the 'best guess' routine, to 3 if the error occurred during the
'get-next' routine, or to 4 if the error occurred during the 'get-prey'
routine. In any event, the error is identified by UP-ERR-CODES (see
Section 6.1.6).

22.2. External Addresses:

UNITI2 Subroutine entry point.

22.3. Called Subroutines: GETRCD.

- 4 0 -

T-501
UNITID

23. UNITID

23.1. Description:

Tris E'L subroutine, intended to be cailed by a COBOL prograr,

delivers a MCCRES Unit File record identified by its MCCRES Volume and
historical evaluation number. The operation of this routine is similar
to that of its successor, UNITI2, described earlier. In fact, much of
the discussion of Section 22.1 applies.

The format of the requisite COBOL call statement is as follows.

CALL "UNITID" USING unit-parm.

where unit-parm has the following minimum COBOL definition.

1 unit-parm.
2 UP-EDXVOL PIC X(6).
2 UP-VOL PIC 99.
2 UP-EVAL PIC 999.

2 UP-FOUND-SW PIC X.
2 UP-EOF-SW PIC X.
2 FILLER PIC X.
2 UP-RCD-NUM PIC S9999 COMP SYNC.
2 UNIT-RCD.
3 UR-VOL PIC 99.
3 FILLER PIC X.
3 UR-EVAL PIC 999.
3 FILLER PIC X.
3 UR-TEXT PIC X(20).
3 FILLER PIC X.
3 UR-DATE PIC X(8).
3 FILLER PIC X.
3 UR-LIST PIC X(2).
3 FILLER PIC X.
3 UR-POR PIC X(4).
3 FILLER PIC X(9).

The calling routine must set UP-EDXVOL to the EDX volume
label where the unit files are located and UP-VOL and UP-EVAL to
the MCCRES Evaluation for which the unit record is requested.
This routine sets UP-FOUND-SW, UP-EOF-SW, AND UP-RCD-NUM
appropriately. UR-VOL AND UR-EVAL are set whether or not the
requested unit record is found. If the requested unit record is
not found, the remainder of UNIT-RCD is blanked.

23.2. External Addresses:

UNITID Subroutine entry point.

23.3. Called Subroutines:

41 -

m . " ' ' ," ''' " , . '- .. ' .'-:? -' . '. ' 7..'. ., .'..', ,

T-501
YNRESP

24. YNRESP

24 .1. Description:

This EDL subroutine will request a YES or NO response from the

user and return to the calling routine according to the user's response.
The calling routine has control over whether a stored (previous) user

response is acceptable or not, whether the response will be requested on

the prompt line or the next line, and if a prompt is given at all.

Upper and lower case characters are equivalent in any user response
(each character is converted to upper case before processing) and any

leading portion of the words YES and NO are equivalent to full words.
Thus, a user may respond either 'y' or 'n' to effect YES or NO,

respectively. Invalid responses result in a diagnostic message being
displayed and this routine being repeated with the force user response
switch being set if not already set. This process will repeat
indefinitly until the user supplies a valid response.

The format of the requisite EDL call statement is as follows:

CALL YNRESPmsgadr.yesrtn,nortn,ctlwrd

where the four arguments are defined as follows.

msgadr The address of a TEXT statement containing the prompting
character string. If no prompt is desired this argument
must be zero. Weather or not the calling program
provides a prompt, this routine sounds the bell
requesting the user's attention.

yesrtn The address of the routine to be entered when the user's
response is YES. If it is desired to have the statement

following the subroutine call executed for a YES response

this operand must be zero.

* nortn The address of the routine to be entered when the user's
response is NO. If it is desired to have the statement

* following the subroutine call executed for a NO response

this operand must be zero.

ctlwrd This argument is a control word which is passed on to the
GETWRD subroutine to control the retrieval of the user's
response. For information on the bit settings and their
meanings refer to GETWRD for a full explanation. However,

only the bits X'1O' (force a user's response) and X'01'
(user response on the following line) are allowed by this
subroutine. All other bit positions are forced to zero

upon entry to this subroutine.

- 42 -

T-501
YNRESP

If it is desired to retrieve the capitalized user response it may
be accessed via the external tag YN$WORK which addresses a four

character TEXT statement. This might be desired when the user response
controls many branches throughout the program and it is desired to save
a user's response without altering the program flow, i.e., both the
yesrtn and nortn arguments are zero.

24.2. External Addresses:

YNRESP Subroutine entry point.

YN$WORK Four character user response TEXT area - upon return
character one will be either a Y or N.

2-.3. Called Subroutines: GETWRD, TRANSI, & UPCASE.

-43

T-501

REFERENCES

[1] BARZILY, Z. (1980). Analyzing MCCRES data. Technical Paper
Serial T-427.

[2] BARZILY, Z., P. R. CATALOGNE, and W. H. MARLOW (1981). Assessing
Marine Corps readiness. Defense Management Journal, Vol. 18,
No. 1, pp. 25-29.

[3] BRIER, S. S., S. ZACKS, and W. H. MARLOW (1985a). An application
of empirical*Bayes techniques to the simultaneous estimation of
many probabilities. Technical Paper T-486. To appear in Naval
Research Logistics Quarterly.

[4] BRIER, S. S., S. ZACKS, and W. H. MARLOW (1985b). Results of a
simulation study to measure the effectiveness of empirical
Bayes' estimates of multiple probabilities. Technical Paper
T-499 (forthcoming).

[5] CAVES, W. E. (1985a). Summary of the GWU Marine Corps Combat
Readiness Evaluation System Software Applications (MCCRESSA).
Technical Paper T-498.

[6] CAVES, W. E. (1985c). Marine Corps Combat Readiness Evaluation
System Software Applications (MCCRESSA) support programs.
Technical Paper T-502.

[7) CAVES, W. E. and W. H. MARLOW (1985). Marine Corps Combat
Readiness Evaluation System (MCCRES) data base. Technical
Paper T-503 (forthcoming).

[8] ZACKS, S. and W. H. MARLOW (1982). Estimating the structural
Parameters of the Marine Corps Combat Readiness Evaluation
System on the basis of the primary categories model. Technical
Memorandum Serial TM-69200.

[9] ZACKS, S., W. H. MARLOW, and Z. BARZILY (1981). Category analysis
of the Marine Corps Combat Readiness Evaluation System.
Technical Paper T-450.

[10] ZACKS, S., W. H. MARLOW, and S. S. BRIER (1985). Statistical
analysis of very high-dimensional data sets of hierarchically
structured binary variables with missing data: an application
to Marine Corps readiness evaluations. Naval Research
Logistics Quarterly, Vol. 32, pp. 467-490.

- 44 -

-- KAMA

JV Dmo-m

